Mellanox

NPS-400 Demo Application

Rev 2.3
Software Version 18.0400.00

www.mellanox.com Mellanox Technologies

Mellanox

TECHNOLOGIES

MOTE:

THIS HARDWARE, S0FTWARE OR TEST SUITE PRODUCT ("PRODUCT(S)) AND ITS RELATED
DOCUMENTATION ARE PROVIDED BY MELLANCK TECHMOLOGIES "AS-15" WITH ALL FAULTS OF ANY
KIND AMD S0OLELY FOR THE PURFPOSE OF AIDING THE CUSTOMER IM TESTING AFPPLICATIONS THAT
USE THE PRODUCTS IMN DESIGHNATED SOLUTIOMNS. THE CUSTOMER'S MAMUFACTURING TEST
ENVIROMMENT HAS MWOT MET THE STAMDARDS SET BY MELLAMOX TECHNOLOGIES TO FULLY
CUALIFY THE PRODUCT(S) AND/OR THE SY5TEM USING IT. THEREFORE, MELLANDX TECHMOLOGIES
CANMOT AND DOES NOT GUARANTEE OR WARRANT THAT THE PRODUCTS WILL OPERATE WITH THE
HIGHEST QUALITY. ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT MOT LUMITED TO, THE
IMPLIED WARRAMTIES OF MERCHAMTABILITY, FITMESS FOR A PARTICULAR PURFPOSE AND
NONIMFRINGEMENT ARE DISCLAIMED. IN MO EVWENT SHALL MELLANOX BE LIABLE TO CUSTOMER OR
ANY THIRD PARTIES FOR ANY DIRECT, INDIRECT, SPECIAL, EXEMPLARY, OR COMNSEQUENTIAL
DAMAGES OF ANY KIND (INCLUDING, BUT NOT LIMITED TO, PAYMENT FOR PROCUREMENT OF
SUBSTITUTE GOODS OR SERYICES; LOSS OF USE, DATA, OR PROFITS; OR BUSIMESS INMTERRUFTION)
HOWEWER CAUSED AND ON ANY THEORY OF LIABILITY, YWHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING MEGLIGEMCE OR OTHERWISE) ARISING N ANY WAY FROM THE USE OF THE
FRODUCT(5) AND RELATED DOCUMENTATION EVEN IF ADWISED OF THE POSSIBILTY OF SUCH
DAMAGE.

Mellanox

TECHMOLOGIES

Mellanox Technologies

350 Oakmead Parkway Suite 100
Sunrywale, CA 94085

U.5.A

it N Ellan0x com

Tel (408) 270-3400

Fax: (408)970-3403

Copyright 2017, Mellanox Technologies Ltd. All Rights Reserved.

Mellanox®, Mellanox logo, Accelio®, Bridge<®, Cloud< logo, Compustor<®, ConnectdBE, Connect<®,
CoolBox®, CORE-Direct®, EZchip®, Efchip logo, EZappliance®, EZdesign®, EZdriver®, EZsystem®,
GPUDirect®, InfiniHost®, InfiniBridge®, InfiniScale®, Kotura®, Kotura logo, Mellanok CloudRack®, Mellanox
Cloud<mellanox®, wMellanox Federal Systems®, Mellanox HostDirect®, Mellanox hulti-Host®, Mellanox Open
Ethernet®, Mellanox OpenCloud®, Mellanox OpenCloud Logo®, Mellanox Peelirect®, Mellanox ScalableHPC®,
Mellanox Storagex®, Mellanox Tunex®, Mellanox Connect Accelerate Outperform logo, Mellanox Yirtual Modular
Switch®, MetroDH®, Metrox®, MLNX-05®, NP-1c®, NP-2®, NP-3®, Open Ethernet logo, Phy=®, Platform-®,
PSIPHY®, SiPhyB, StorexE, Switch-®, Tilera®, Tilera logo, Test<®, Tunex®, The Generation of Open Ethernet
logo, UFM®, Unbreakable Link®, “irtual Protocol Interconnect®, Yoltaire® and “oltaire logo are registered
trademarnks of Mellanox Technologies, Ltd.

All other trademarks are property of their respective owners.

Forthe most updated list of Mellanox tradernarks, visit http A mellanox . com/pagetrademarks

Doc #: MLNX-15-51764-0O Mellanox Technologies

A

Mellanox

TECHNOLOGIES

Table of Contents

TableofContentscciiiiiiiiiiiiiiiiinnernnnnnennnnnnnns 3
ListOf FigUres iiii ittt i ittt et ttenneeennnneneannnnns 5
Listof Tablest i i ittt et iianennnnnnans 6
Release Update Historyciiiiiiiiiiiiieiiiirinenennnnnns 7
Chapterl Introductioncciiiiiiiiiiiiiinnnnnnnneennenns 8
1.1 Folder Structureand Contents, 9

Chapter 2 GettingStarted.cciiiiiiiiiiiiiinnnneeennnnns 10
2.1 Compilingthe Application 10

2.1.1 Compiling with Makefile.......... i i i, 10

2.2 Startingthe Application.......... i 11

2.2.1 Launch from Linux ShellonaReal Chip.............. 11

2.2.1.1 Usingdemo_cpastheControlPlane.............. coiiun... 11

Chapter 3 Sample Input and Configuration.......................... 12
3.1 CoreConfigurationt 12

3.2 Control Plane Configuration i, 12

3.3 INPUL Frames. . ..o e e e 12

3.4 Control Plane Logging.o it e e 12

3 FOrmMats . o e e e e 13

3.5.1 Lookup Table Definition i i 13

3.5.2 CMEM Data ..ot e e 13

Chapter 4 ControlPlaneDetails..............ciiiiiiiiiinnnnnnnnnn 15
4.1 Supported Platform 15

4.2 Implementation e 15

4.2.1 Environment Initialization 15

4.2.2 NPSInitialization e e 15

4.2.3 Operation EXecutionttt e e e 16

4.2.3.1 AddRule (Operation#1)........iiiiiniii i, 17

4.2.3.2 Delete Rule (Operation#2). ...t 17

4.2.3.3 UpdateRule (Operation#3)i i, 18

4.2.3.4 Show All Rules (Operation#4)couiiiiiiiiiiinnann. 18

4.2.3.5 Enable/Disable AGT Debug Agent Interface (Operation#5) 19

Chapter5 DataPlaneDetails i, 20
5.1 Operation ... e e e 20

Chapter 6 Appendix A: Screenshots from the Control Plane............ 22

Rev 2.3 Mellanox Technologies

A

Mellanox

TECHNOLOGIES

Chapter 7 Appendix B: Data Plane CommandlLine.................... 25

4 Mellanox Technologies Rev 2.3

A

Mellanox

TECHNOLOGIES

List of Figures

Figure 1: Integrated Control Plane OperationsMenuot iiininnnnnnn. 16
Figure 2: Flow Chart e e e e e e e e 21
Figure 3: Integrated Control Plane OperationsMenu i, 22
Figure4: AddaNew ForwardingRule Screeniiiiiiiiii it iiannn 22
Figure 5: Delete a Forwarding Rule Screenttt et iea s 23
Figure 6: Updatea Forwarding Rule Screen i it 23
Figure 7: Show All Forwarding RUles SCreenttt e e et et et i e 24
Figure 8: Enable/disable AGT Debug Agent Interface Screenccoiiiiiiinn... 24
Rev 2.3 Mellanox Technologies

A

Mellanox

TECHNOLOGIES

List of Tables
Table 1: Revision History Table i e e e e 7
Table 2: Demo Application Folder Structure i e e 9
Table 3: Forwarding Hash Result Format i i 13
Table 4: CMEM FOrmat. . ottt e e e e e e e e e e 13
Table 5: Shared CMEM Format ou it e e e et et et e 14
Table 6: Main Parts of the Control Plane ...t i e 15
Table 7: Operations Available in the Integrated ControlPlane., 16

6 Mellanox Technologies Rev 2.3

A

Mellanox

TECHNOLOGIES

Release Update History

Table 1 - Revision History Table

Release Date Description
Rev 2.3 Jan. 16, 2017 Relates to EZdk version 18.0400.00.
2.2 Sept. 15, 2016 Relates to EZdk version 18.0300.00.
2.1 Open Jul. 4, 2016 Relates to EZdk version 2.1a Open.

Rev 2.3 Mellanox Technologies

A

Mellanox

TECHNOLOGIES

1 Introduction

The Demo Application is a self-contained sample of a software application for the NPS-400 net-
work processor supplied in the EZdk software development kit. The sample was designed as a
reference for software developers who plan to develop both control plane and data plane software
for products using the NPS-400 network processor.

The application demonstrates the following control plane features:

Add, delete and modify of the forwarding rules contained in a hash data structure.
Connecting to an Agent port.

Compiling the application using the makefile.

Initialization of the control plane application.

Use of the EZcp API routines to configure and work with the network processor.

In the data plane, the application receives, modifies and forwards Ethernet packets from one port
to another based on their source port and C-VLAN configuration. It retrieves information
required for sending out the frame by performing a lookup in the Forwarding Hash data structure.
The new C-VLAN and destination interface are determined by the lookup result.

Mellanox Technologies Rev 2.3

A

Mellanox

TECHNOLOGIES Introduction

1.1 Folder Structure and Contents
The Demo Application is part of the EZdk installation and is located under the \samples\demo\
folder. Its folder structure is shown below:

Table 2 - Demo Application Folder Structure

Folder Contents

\demo_target Demo target root directory. Used by both the target launches
(demo_cp and demo_dp).

\frames Demo target frames input.
\launches Demo target launches. Also includes the run_demo cp_target.sh script
to run demo_cp.
\demo cp Control plane launch root directory. Also includes the Makefile.
\src Source files for the control plane launch (*.c and *.h).
\demo dp Data plane launch root directory. Also includes the Makefile.
\src Source files for the data plane launch (*.c and *.h).

Rev 2.3 Mellanox Technologies 9

A

Mellanox

TECHNOLOGIES

2 Getting Started

This section describes how to operate the Demo Application.

* Compiling the Application explains how to compile the application.

» Starting the Application explains how to run the application.

2.1 Compiling the Application
This section provides detailed information on how to compile the Demo Application.

The application can be compiled for the Linux x86 platform.

2.1.1 Compiling with Makefile

Step 1. Go to the directory /samples/demo/demo_cp
Step 2. Build the demo_cp application using the command:
EZDK BASE={base EZdk path} EZDK PLATFORM=linux x86 64 make

10 Mellanox Technologies Rev 2.3

A

Mellanox

TECHNOLOGIES Getting Started

2.2 Starting the Application

This section describes various methods for running the Demo Application.
2.2.1 Launch from Linux Shell on a Real Chip

2.21.1 Using demo_cp as the Control Plane

Step 1. Open a shell on your Linux system.

Step 2. Run the ./samples/demo/demo _target/launches/run_demo cp target rc.sh script using the
following command line:

./samples/demo/demo_target/launches/run demo cp target rc.sh . [base EZdk path]
[sample dp] [host ip] [chip ip]

Step 3. The script will start logging to screen the action it performs and open 3 new terminal win-
dows:

* demo_cp — running the driver — do not close this windows until finish testing
* HOST - a terminal with ssh connection to the host
* CHIP - a terminal with telnet connection to the chip

Step 4. In the CHIP terminal, the sample bin file is located under the /tmp folder. The sample is not
automatically run and the user needs to manually run it, e.g. /tmp/demo_dp.

Rev 2.3 Mellanox Technologies 11

A

Mellanox

TECHNOLOGIES

3 Sample Input and Configuration

3.1 Core Configuration

The core is configured with:
* 640 bytes of private CMEM

* 256 bytes of shared CMEM
* 256 bytes of caches
* 1K of stack

* Two FMT slots (slots #5 and #11) mapped to x1 cluster code and x16 cluster code,
accordingly.

3.2 Control Plane Configuration

The sample configures two ports and transmits 48 frames which enter port 0 on side 0 and exit
from port 0 on side 1.

The configuration is defined by the control plane application.

3.3 Input Frames

When working with the real chip, frames should be sent by a traffic generator.

The input frames are represented in *.pcap files, one file per port, located in the /frames direc-
tory.

frames_in_side0 eng0 10GE_00.pcap

The file contains 48 frames for side 0 engine 0 10GE interface number 0.

24 frames in the file are simple UDP packets of IPv4 Ethernet type (untagged packet).
Another 24 frames in the file are TCP packets of different sizes with a C-VLAN tag.

Input frame files supplied use the naming convention:
frames_in_side<side number> eng<engine number> <interface type> <interface number>
where

chip <side number>is 0 or 1

interface <engine number> is 0-3

<interface type> is 10GE, 40GE or 100GE

<interface number> is a two digit value representing the interface number 0-11.

3.4 Control Plane Logging
The logging system can be available by calling the following EZenv library API sets:
Step 1. Configure the variable that will hold the file name: EZc¢8 acFullFileName[1024 + 256];
Step 2. Call EZIlog_SetFileName(acFullFileName);
Step 3. Call EZlog_OpenLogFile();
Step 4. Call EZIlog SetForceFlush(TRUE);

12 Mellanox Technologies Rev 2.3

A

Mellanox

TECHNOLOGIES

Step 5. Set all the logs you want to open through:
EZlog_SetLog(EZlog OUTPUT_FILE, EZlog COMP_ALL, EZlog SUB_COM-
P_LOG_ALL, EZlog LEVEL_DEBUG);

Sample Input and Configuration

3.5 Formats
3.5.1 Lookup Table Definition
The Forwarding Hash structure serves for retrieving the transmit information required for for-
warding the incoming frame.
The key for the lookup table is constructed from the input port’s logical ID and C-VLAN ID. The
result of the lookup contains the C-VLAN ID for the outbound frame and 16 bytes of Tx Info
used for writing to the job descriptor when transmitting the frame to the TM.
Table 3 - Forwarding Hash Result Format
Name Byte Offset Note
Control 0 The first 4 bits are for lookup control. The rest of the bits
are reserved (ignored).
C-VLAN 2.3 The first 12 bits are the C-VLAN ID of the outbound
frame.
The rest of the bits are reserved (ignored).
Destination 4.7 20 bits of flow ID (bits 0..18) and side (bit 19)
3.5.2 CMEM Data
This section describes the structure of the CMEM (core local memory), as used in the applica-
tion. The structure was specifically designed to match the application's behavior and require-
ments.
Table 4 - CMEM Format
Name Size in Bytes Note
Frame 84 The frame data structure.
Frame data 256 256 byte data buffer working area — used to load first
buffer data for processing and modification.
Decode result 16 The result of the MAC addresses decoding and parsing.
Lookup key 4 The key for the Forwarding Hash lookup (input port’s
logical ID and C-VLAN ID).
Work area 144 Working area for the Forwarding Hash lookup.
Rev 2.3 Mellanox Technologies 13

A

Mellanox

TECHNOLOGIES

Table 5 - Shared CMEM Format

Size in Bytes

Forward hash struct descriptor 20 Hash structure descriptor for forwarding
hash database

14 Mellanox Technologies Rev 2.3

A

Mellanox

TECHNOLOGIES

4.2

4.2.1

4.2.2

Control Plane Details

Supported Platform

The control plane includes support for the Linux x86 platform.

The control plane may be run on an NPS evaluation board.

Implementation

The control plane is divided into the following main parts:

Table 6 - Main Parts of the Control Plane

Part Description

Environment Initialization | Initialization of the NPS host environment, including the vari-
ous software components in the host.

NPS Initialization Creation and initialization of the NPS channel, including defini-
tion of search structures and loading of the search memory par-
tition.

Operation Execution Execution of the Control Plane sample operations based on the
user selection in the operations menu.

The following sections provide more details on each of these topics.

Environment Initialization

The first portion of the application provide a reference for initial/common portions of the host
application, such as the initialization and shutdown sequence of the control plane SDK host com-
ponents.

init_board(): Initialize the EZdev SDK host components to work with an NPS evaluation board.
init_cp(): Initialize the control plane SDK host components.

delete_board(): Delete the EZdev SDK host component.

delete_cp(): Delete the control plane SDK host components.

In many cases, this reference implementation can be used as is for customer host applications.

NPS Initialization

Once the environment initialization has been performed, the application demonstrates the cre-
ation and initialization of the NPS channel, including definition of search structures and loading
of the search memory partition.

This is done by invoking the function setup_chip().

Control Plane Details

Rev 2.3

Mellanox Technologies

15

A

Mellanox

TECHNOLOGIES

4.2.3 Operation Execution

The final portion of the application displays the control plane operations menu (Figure 1) and
performs the execution of the various operations based on the developer’s selection.

The scenarios are executed via a CLI menu (see routine ¢p_menu_CLI() located in /demo_cp/
src/cli.h). The operation menu is displayed, and the operation start functions are invoked based
on the developer’s selection. Each operation opens a new CLI menu with the desired operation.

Figure 1: Integrated Control Plane Operations Menu

o e T T T F T F b F T e e e npe s e R PR R

Please enter what would you like to do

8. Exit.

1. Add rule.

2. Delete rule.

3. Update rule.

4. Show all rules.

5. Enable/disable AGT debug agent interface.

Table 7 - Operations Available in the Integrated Control Plane

Menu . q Ao
Value Scenario Name Operation Description
0 Exit Exit the application.
1 Add Rule (Operation #1) Add a new forwarding rule to the hash structure.
2 Delete Rule (Operation #2) Delete an existing forwarding rule from the hash
structure.
3 Update Rule (Operation #3) Update an existing forwarding rule in the hash
structure.
4 Show All Rules (Operation #4) | Show all rules configured in the hash structure.
Enable/Disable AGT Debug Enable/disable agent interface with a specific port
Agent Interface (Operation #5) | number.

To run an operation enter the number of the desired scenario on the keyboard followed by the
Enter key (e.g. press “1 + Enter” to begin the Add rule operation).

Wait for the operations to run and display on screen.
To terminate the Control Plane sample press “0+ Enter”.
The following sections provide detailed information on each of the supported operation.

Screenshots are shown in Appendix A: Screenshots from the Control Plane.

16

Mellanox Technologies Rev 2.3

A

Mellanox

TECHNOLOGIES Control Plane Details

4.2.3.1 Add Rule (Operation #1)

The Add Rule operation demonstrates how a new forwarding rule is added to the hash structure
using the EZcp library APIs.

Operation Flow
» The developer will enter the source port of the packet.
» The developer will enter the source VLAN of the packet.
* The developer will enter the destination port of the packet.
* The developer will enter the destination VLAN of the packet.
* Anew rule will be added to the hash structure according to the input parameters.
Screenshot is shown in Figure 4,“Add a New Forwarding Rule Screen”.
Operation Code
* Read source port entered by the developer.
* Read source VLAN entered by the developer.
* Read destination port entered by the developer.
* Read destination VLAN entered by the developer.
* Build the search_key and search_result for the entry to insert into the hash structure.
* Add the entry to hash structure using the API routine EZapiStruct AddEntry().

* Print the added rule to the screen.

4.2.3.2 Delete Rule (Operation #2)

The Delete Rule operation demonstrates how to delete existing forwarding rule using the Control
Plane library APIs.

Operation Flow

* The developer will enter the source port of the packet.

* The developer will enter the source VLAN of the packet.

* The developer will enter the destination port of the packet.

* The developer will enter the destination VLAN of the packet.

» The existing rule will be deleted from the hash structure according to the input parameters.
Screenshot is shown in Figure 5,“Delete a Forwarding Rule Screen”.
Operation Code

* Read source port entered by the developer.

* Read source VLAN entered by the developer.

* Read destination port entered by the developer.

Rev 2.3 Mellanox Technologies 17

A

Mellanox

TECHNOLOGIES

* Read destination VLAN entered by the developer.

* Build the search_key and search_result for the entry to remove from the hash structure.
* Delete the entry from hash structure using the API routine EZapiStruct DeleteEntry().
* Print the deleted rule.

4.2.3.3 Update Rule (Operation #3)

The Update Rule operation demonstrates how to update an existing forwarding rule with a new
rule using the EZcp library APIs.

Operation Flow
* The developer will enter the source port of the packet.
* The developer will enter the source VLAN of the packet.
* The developer will enter the new destination port of the packet.
* The developer will enter the new destination VLAN of the packet.
* An existing rule will be updated in the hash structure according to the input parameters.
Screenshot is shown in Figure 6,“Update a Forwarding Rule Screen”.
Operation Code
* Read source port entered by the developer.
* Read source VLAN entered by the developer.
* Read new destination port entered by the developer.
* Read new destination VLAN entered by the developer.
* Build the search_key and search_result for the entry to update the hash structure.
» Update the entry from hash structure using the API routine EZapiStruct UpdateEntry().
* Print the updated rule.

4.2.3.4 Show All Rules (Operation #4)

The Show All Rules operation demonstrates how to show all forwarding rules configured in the
hash structure using the EZcp APIs. Initially the hash structure is configured with no rules.

Operation Code
o [terate over all the entries in the hash structure using the API routine EZapiStruct Iter-
ate().

e Print all the rules to the screen.

Screenshot is shown in Figure 7,“Show All Forwarding Rules Screen”.

18 Mellanox Technologies Rev 2.3

A

Mellanox

TECHNOLOGIES

4.2.3.5 Enable/Disable AGT Debug Agent Interface (Operation #5)

The Enable/disable AGT debug agent interface operation demonstrates how to open a socket to
the agent interface with a specific port using the EZagt Agent group APIs. This selection may
also be used to close such a socket once it has been opened.

Operation Flow

The developer will enter the port of the Agent.

A new socket will be opened for listening in the specific port.

Screenshot is shown in Figure 8,“Enable/disable AGT Debug Agent Interface Screen”.

Operation Code

Read agent port from user.

Create a new server with the specific port to listen using the API routine EZagtRPC Cre-
ateServer().

Register standard control plane commands on the specific port using the API routine
EZagt RegisterStandardCmdFunctions().

Create the task for run rpc-json commands using the API routine EZosTask Spawn().

Print the agent port opened to the screen.

Control Plane Details

Rev 2.3

Mellanox Technologies

19

A

Mellanox

TECHNOLOGIES

5 Data Plane Details

5.1 Operation

The main flow of the data plane is as follows (see Figure 2):
Step 1. Receive a new frame.

Step 2. Load current frame buffer to CMEM (after frame receive, the user can assume current buf-
fer = first).

Step 3. Parse and decode the Ethernet header (Layer 2 header) to ensure validity of the Layer 2
data.

Step 4. Build a lookup key with the source port’s logical ID and C-VLAN ID. (If the Ethernet
packet is untagged, the default VLAN ID is used.)

Step 5. Perform a lookup in the Forwarding Hash search structure.
Step 6. If C-VLAN already exists:
Stepa. Update the C-VLAN data based on the result of the lookup.
Step 7. Else
Stepa. Add C-VLAN to the packet, while the VLAN ID is based on the lookup result.
Step 8. Store the updated buffer data in CMEM back to the current frame buffer.

Step 9. Send the frame to the TM. Use the destination received from lookup.
Use MAC decode hash to select the link for LAG.

20 Mellanox Technologies Rev 2.3

Mellanox

TECHNOLOGIES

Figure 2: Flow Chart

¥

Receive a new frame

v

Load data from the current buffer of

the frame
Error detected

Build lookup key with the source port's
logical ID and C-VLAN D (if not
present, uses default WLAM 10

Decode
MAC header

Mo errors detected

¥

Perform loaokup

Ethernet

Data Plane Details

P4 ar IPvE

Insert a C-YLAN header after the MAC
addresses based on the lookup result

C-WLAN l

Update C-vLAN data based on the
lookup result

¥

Store updated frame data to the
current frame buffer

¥

Send frame to TM.
Use destination returned frarm lookup.

Rev 2.3

Mellanox Technologies

21

Mellanox

TECHNOLOGIES

6 Appendix A: Screenshots from the Control Plane

Provided below are sample screen shots when running the integrated control plane.

Figure 3: Integrated Control Plane Operations Menu

e e e T o e

* Menu *

EE E bk kR R R R R e R R

Please enter what would you Like to do

@. Exit.

1. Add rule.

2. Delete rule.

3. Update rule.

4. Show all rules.

5. Enable/disable AGT debug agent interface.

Figure 4: Add a New Forwarding Rule Screen

a2
s e o e e S S S S S S S S S S R R R e

* Rule selection 0. *
(To Quit press 'g" any time) *

e o e e e e 0 e O e 0 e e O O e e o o 0 O 0 O O O O O O O O O o O o o o e O e O o o e O o e o

Please enter the source port

1

Please enter the source wvlan ID.

1

Please enter the destination port.

1

Please enter the destination wvlan ID.
1

I
Rule added with
sgurce port: 1,

vlan: 1,
destination port: 1,
vlam: 1.

22 Mellanox Technologies Rev 2.3

Mellanox

TECHNOLOGIES Appendix A: Screenshots from the Control Plane

Figure 5: Delete a Forwarding Rule Screen

* Delete rule *
* (To Quit press "g' any time) *
e o e o o o o e o o o e o e o o o o o o o e o i e o o e o e o o o o o o o o o e e

Please enter the source port

2 [

Please enter the source wlan ID.

2

Please enter the destimation port.

3

Please enter the destination vlan ID.

3

Figure 6: Update a Forwarding Rule Screen

* Update rule *
* (To Quit press "qg' any time) *
FEEFEFEFEFEF R A S R AR SR R R R R R R R R R o R o R R o o o o o

Please enter the source port

1

Please enter the source wvlan ID.

1

Please enter the new destination port.

2

Please enter the new destination vlan ID.
3

Rule update with
source port: 1,

vlianm: 1,
destination port: 2,
vlam: 3.

Rev 2.3 Mellanox Technologies 23

Mellanox

TECHNOLOGIES

Figure 7: Show All Forwarding Rules Screen

e R S S R]

ALl Rules:

e e O S e s

Rule
source port: 1,
vlan: 1,
destination port: 2,
vlan: 3.

Figure 8: Enable/disable AGT Debug Agent Interface Screen

A R R R R R R R N R R R R R N R R R R R R R R R RN R R R R AR IR IR IR IRI NIRRT R

* Agent selection *
* (To Quit press 'q' any time) ¥

Please enter the Agent port

1234

Agent created on port 1234

24 Mellanox Technologies Rev 2.3

A

Mellanox

TECHNOLOGIES

7

Appendix B: Data Plane Command Line

Appendix B: Data Plane Command Line

The data plane command line is as follows:

data plane demo app -run cpus <cpus_string>

Option Description

-run_cpus <cpus_string>

Specifies the processors to run the application on.

<cpu_string> is a comma-delimited list of separate processors, or
a range of processors.

Usage example: 0,5,7-9 - use cpus: 0,5,7,8,9

Default value: If a “run_cpus” argument is not supplied, the
application is run only on processor 16.

Note:

The father application spawns the needed child processes and
passes each child the processor ID it should run on. Each child
process then binds itself to the matching processor, and obtains
its own private resources and mappings. After the work processes
creation, the father process waits indefinitely. When the father
process receives a shutdown signal, it kills all the child processes
and terminates the application.

If only one processor is passed, the application binds itself to that
processor without creating any child processes.

Rev 2.3

Mellanox Technologies

25

	NPS-400 Demo Application
	Table of Contents
	List of Figures
	List of Tables
	Release Update History
	1 Introduction
	1.1 Folder Structure and Contents

	2 Getting Started
	2.1 Compiling the Application
	2.1.1 Compiling with Makefile

	2.2 Starting the Application
	2.2.1 Launch from Linux Shell on a Real Chip
	2.2.1.1 Using demo_cp as the Control Plane

	3 Sample Input and Configuration
	3.1 Core Configuration
	3.2 Control Plane Configuration
	3.3 Input Frames
	3.4 Control Plane Logging
	3.5 Formats
	3.5.1 Lookup Table Definition
	3.5.2 CMEM Data

	4 Control Plane Details
	4.1 Supported Platform
	4.2 Implementation
	4.2.1 Environment Initialization
	4.2.2 NPS Initialization
	4.2.3 Operation Execution
	4.2.3.1 Add Rule (Operation #1)
	4.2.3.2 Delete Rule (Operation #2)
	4.2.3.3 Update Rule (Operation #3)
	4.2.3.4 Show All Rules (Operation #4)
	4.2.3.5 Enable/Disable AGT Debug Agent Interface (Operation #5)

	5 Data Plane Details
	5.1 Operation

	6 Appendix A: Screenshots from the Control Plane
	7 Appendix B: Data Plane Command Line

